{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Jupyter Notebook" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 데이터는 임의로 생성" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "header = ['col1', 'col2', 'col3', 'col4']\n", "data = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame(data, columns=header)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
col1col2col3col4
01234
15678
29101112
\n", "
" ], "text/plain": [ " col1 col2 col3 col4\n", "0 1 2 3 4\n", "1 5 6 7 8\n", "2 9 10 11 12" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUZdqA8fukkUJ6CISEEBI6CV16iSJSpEsRkBrAsq6urm3tDfvq6vqBpNKLSLOCqIReBEQSCCWFNEqSSe9l3u+PMyLLygqkvJPk/V3XXgtp8xCHZ4bJOefWhBAoiqIo9Y+F7AEURVGU26MWuKIoSj2lFriiKEo9pRa4oihKPaUWuKIoSj1lVZc35uHhIfz8/OryJhVFUeq9Y8eOZQkhml3/9jpd4H5+fhw9erQub1JRFKXe0zQt+Y/erl5CURRFqafUAlcURamn1AJXFEWpp+r0NfA/UlFRQVpaGqWlpbJHqRW2trb4+PhgbW0texRFURoY6Qs8LS0NR0dH/Pz80DRN9jg1SgiBwWAgLS2NNm3ayB5HUZQG5k9fQtE0LVLTtAxN02Kvedv7mqad0TTtpKZpWzRNc7ndAUpLS3F3d29wyxtA0zTc3d0b7L8uFEWR62ZeA18OjLzubTuBQCFEV+Ac8I/qDNEQl/dvGvKfTVEUuf50gQsh9gDZ173teyFEpem3hwCfWphNURSl3qtIT+fK229TlZdX41+7Jo5CmQ98d6N3apq2SNO0o5qmHc3MzKyBm5Pn1Vdf5YMPPgBg48aNdOnSBQsLC3VykqIo/6UsPp6Lzz5H/IiRZK9ZS/Gx4zV+G9X6IaamaS8AlcCaG32MECIUCAXo3bt3g6lHBAYGsnnzZh588EHZoyiKYkZKTp4kKzSUwh9+RLOzw3XGdNznzcPay6vGb+u2F7imaXOAMcAwUc+zPitXruSDDz5A0zS6du3Km2++yfz588nMzKRZs2ZERUXh6+v7H5/TqVMnSdMqimJuhBAUHzxIVmgYxYcOYeHsjMcjj+A66wGsXF1r7XZva4FrmjYSeBYYKoQorqlhXvvqFKcv5tfUlwOgc0snXhnb5YbvP3XqFIsXL2b//v14eHiQnZ3NnDlzmD17NnPmzCEyMpLHHnuMrVu31uhciqLUf8JopGDnDxjCwiiNjcWqWTM8n3kGl6lTsWzqUOu3/6cLXNO0dUAw4KFpWhrwCvpRJ02AnaajLA4JIR6qxTlrzU8//cTkyZPx8PAAwM3NjYMHD7J582YAZs2axTPPPCNzREVRzIwoLyfvq68xhIdTnpSEdWtfWrz+Gs4TJmBhY1Nnc/zpAhdCTP+DN0fUwiz/85lybRFC/OmhfupQQEVRAIzFxeR+8QWGqOVUXrpEk44d8f7wnziOGIFmaVnn8zT6a6EMGzaMzz//HIPBAEB2djYDBgxg/fr1AKxZs4ZBgwbJHFFRFMmq8vLIXLKE+LuGceWtt7H2bkmr0GW02bIZp9GjpSxvMINT6WXr0qULL7zwAkOHDsXS0pIePXrwySefMH/+fN5///2rP8S83pYtW/jrX/9KZmYm9957L927d2fHjh0S/gSKotSWiisZZK9YQe769RiLi2kaHIz7ooXY9+wpezQAtLo8gKR3797i+mOm4+LiGvwRHY3hz6goDUl5cjKG8Ajytm5FVFXhNHo07gsXYNuhg5R5NE07JoToff3bG/0zcEVRlN+UxsVhCAsjf/sONCsrnO+bhHtICDatWske7Q+pBa4oSqNXfPQoWaGhFO3Zi4WDA+7z5+E6ezbWnp6yR/uf1AJXFKVREkJQuHs3htAwSo4fx9LVlWZ/exzXGTOwdHKSPd5NUQtcUZRGRVRWkr99B4awMMrOnsWqpRfNX3gBl8n3YWFnJ3u8W6IWuKIojYKxrIy8LVsxRERQkZqKTUAAXu+8jfO996LV02KWWuCKojRoVYWF5K5fj2HFCqoys7Dt2pXmzz5D07vuQrOo36fCqAV+C1599VWaNm3KU089xdNPP81XX32FjY0NAQEBREVF4eJy22EiRVFqWGV2NtkrV5Kzdh3G/HwcBvTH/f33se/bt8GcXV2/H34kGj58OLGxsZw8eZL27dvz9ttvyx5JURSg4uJFLr+5mPi7hmFYFopD3774bfwc38hIHPr1azDLG9QCB/TLyXbt2pVu3boxa9YskpOTGTZsGF27dmXYsGGkpKT81+fcc889WFnp/4Dp168faWlpdT22oijXKEtI4OJz/yD+nhHkrF+P06hR+H/zNT7//gS7oCBpcyXnJ/PGwTfILc2t8a9tXi+hfPccXI6p2a/ZIghGvXPDd9fE5WQjIyOZNm1azc6tKMpNKYmJwRAaSsEPP6I1aaIHFObOxbplS6lzxRniiIiNYGfyTqw0K4a2GsoQnyE1ehvmtcAlqO7lZBcvXoyVlRUzZ86sk3kVRbkmoBAWRvHBQ1g4OeHx8EO4zppVqwGFm5nr2JVjhMeGsz99Pw7WDsztMpdZnWfhYedR47dnXgv8fzxTri3VuZzsihUr+Prrr/nxxx8b1OtqimKuhNFIwQ8/YAgLpzQmRg8oPP00LtOm1UlA4YZzCcHutN1ExERwIvMEbrZuPN7zcaZ2mIqTTe2dFGReC1yCYcOGMXHiRJ544gnc3d3/43Kys2bNuuHlZLdv3867777L7t27sbe3lzC5ojQeoqLi94BCYiLWvr60eO01nCeMx6JJE2lzVRor2X5hOxExEcTnxtPSoSXP932eiW0nYmtlW+u33+gX+O1eTvbRRx+lrKyM4cOHA/oPMj/77LO6Hl9RGjRjSQm5G7/AEBV1NaDQ8p8f4DRiBJqVvPVVVlXG1vNbiToVRXphOgHOAbw16C1GthmJtUXdnRSkLidbBxrDn1FRalJVXh45a9eSvXIVVTk52PXqhceihTgMGSL15crC8kI2nN3AqtOrMJQa6OrRlZCgEIJbBWOh1d5BfepysoqimL2KDFNAYZ0poDB0qB5Q6NVL6lyGEgNr4taw/sx6CioK6O/VnwVBC7ijxR1SH1DUAlcURbrylBQ9oLBlix5QGDUK90ULpQUUfnOx8CLLTy1n8/nNlFeVc3fruwkJCqGLe933e/+IWuCKokhTeuYMhtAw8rdvR7O0xHnSJNxD5mPj6yt1roTcBCJiIvg26Vs0TWOs/1jmBc6jjXMbqXNdTy1wRVHqXPGxY3pAYfceLOztcZs3F7c5c6QHFE5mniQ8Jpxdqbuws7JjesfpzOkyhxYOLaTOdSNqgSuKUieEEBTt2UNWaBglx47pAYXHH9MDCs7OUuc6eOkgETERHLl8BCcbJx7q9hAzOs7A1VbeSUE3Qy1wRVFqlaisJH/HDgxh4ZSdOYOVlxfNn38elymTpQYUjMLIjyk/Eh4TzmnDaTztPHmq91NMbj8ZB2t5JwXdCrXAb8G1l5N96aWX2LZtGxYWFnh6erJ8+XJaSr72gqKYk6sBhchIKlJSsPH3x+vtt3EeIzegUFFVwdeJXxMZG8mF/Av4OvrySv9XGBcwDhtLG2lz3Q61wG/T008/zRtvvAHAJ598wuuvv65O5FEUoKqwiNwN68levoLKzExsg4Lw/PcnOA4bJjWgUFxRzObzm1l+ajlXiq/Q0a0j7w99n+G+w7G0sJQ2V3WoBY5+OdkPPvgATdPo2rUrb775JvPnzyczM/PqmZi+1/1U3Oma6GlRUZG6ForS6FVmZ5O9ahU5a9ZizM/Hvn8/Wr73LvaSr8GdV5bH2jNrWRu3ltyyXHo178WrA15lYMuB9f7v7Z8ucE3TIoExQIYQItD0NjdgA+AHXACmCiFyqjvMu0fe5Uz2mep+mf/Q0a0jz/Z59obvr87lZF944QVWrlyJs7Mzu3btqtG5FaW+qLh4EUPUcnI3bkSUluI4/G7cFy2Seg1ugIziDFaeWsnGcxsprixmqM9QFgQtoLtnd6lz1aSb+ffMcmDkdW97DvhRCNEO+NH0+3rpRpeTnTFjBqBfTnbfvn1/+LmLFy8mNTWVmTNn8umnn9bZzIpiDsoSE7n4j+f1gMK6dTiNHGkKKPxb6vJOyU/h1QOvMnLTSFbFrSK4VTCbxm3i02GfNqjlDTfxDFwIsUfTNL/r3jweCDb9egUQDdz4ae5N+l/PlGtLdS4n+5sZM2Zw77338tprr9XkaIpilkpiYk0BhR/0gML99+M+by7W3t5S5zqTfYaImAi+T/4eK82KiW0nMjdwLq0cW0mdi4w4OPApDH8NHGr2muC3+xp4cyHEJQAhxCVN02549L2maYuARcB/vY5sDm73crLnz5+nXbt2AHz55Zd07NixrkdXlDojhKD40CGyQkP1gIKjI+4PLsJt9mys3NykznbsyjHCY8LZl76v1gMKtyTtKOz9EM5+A9b20GUCtBteozdR6z/EFEKEAqGgX42wtm/vVt3u5WSfe+45zp49i4WFBa1bt1ZHoCgNkjAaKfjxRz2gcPIkls088Hzq77jcfz+WTZvKm0sI9qbvJTwmnF8yfsHN1o3HejzGtI7TajWgcBODQeIufXFf2Au2LjD0OeizCBzca/zmbupysqaXUL6+5oeYZ4Fg07NvLyBaCPGnV51Rl5NVlPpBVFSQ9/U3ekAhIQHrVq1wDwnBeeIE6QGF7y98T0RsBOdyzuHl4MXcLnOZ2G4idlbyTgrCWAVxX8G+j+DSCXD0gv6PQq+50KT6D3Q1fTnZL4E5wDum/99WjdkURTETxpIScr/YhCEqksqLl2jSoQMtP/gAp5HyAwrb4rcRFRtFWmEa/s7+LB60mFFtRtVpQOG/VJbDyQ2w/2MwnAc3fxj7CXS7H6xq/4HuZg4jXIf+A0sPTdPSgFfQF/fnmqaFACnAlNocUlGU2lWVn/97QCE7G7uePWnx8ss0HTpUekDh83Ofs+r0KrJKsgjyCOKpO57izlZ31mpA4U+VF8GxFXDwU8hPhxZBMDkKOo+HOjwp6GaOQpl+g3cNq+FZFEWpYxUZGeSsXEnOuvUYi4pwGDIYj0WLsO/9X/9ar1PZpdmsPr2a9WfXU1BeQD+vfrwz+B36tOgj9+Sb4mw4EgaHP4OSbGg9UH/G3XYYSJhLnYmpKI1QeWrq7wGFykqcRo7AfeFCbCX/rOZS4aWrAYWyqjI9oBAYQhcPyQGF/Ev6s+1jy6G8ENqPgkFPgG9fqWOpBa4ojUjp2bN6QOG77/SAwsSJekChdWupcyXmJhIRG8G3id8CMCZgDPMC5+Hv7C91LgwJ+uvbv67Tf1AZeB8M+hs0V0UeRVHqSPHx4xiWhVK4e7ceUJhrCig0lxtQiM2KJTwmnJ9SfsLWypb7O95vHgGFSydh34dwehtYWEOPWTDgr+Cmijz11rWXk/3NBx98wNNPP01mZubV0/EVxRwIISjau5es0FBKjh7D0sUFj8f+ituMGVi6uEid69ClQ0TERnD40mEcbRxZ1HURMzvNlBtQEAKSD+iLO/4HsHGEAY9Bv0fAsbm8uf4HtcCrITU1lZ07d5rlGaZK4yWqqijYsYOssHDK4uKwatGC5s//A5fJk7Gwt5c2l1EY+SnlJyJiIog1xNLMrhl/7/V3pnSYIjegIASc26Ev7tTDYO8Bd70EdywAO3kPdDdDLXBu73KyAE888QTvvfce48ePlzC1ovwnY3m5HlCIiNADCm3a4LV4Mc5jx6DZyAsVVBgr+CbxGyJjI0nKS6KVYyte7v8y4wPGyw0oVFXCqS36yTcZp8C5FYx6H3o8ADbyHuhuhVkt8MtvvUVZXM1eTrZJp460eP75G77/di8n++WXX+Lt7U23bt1qdF5FuVV6QGED2cuX6wGFLl3w/PhjHO8ehmYpL1RQUllyNaBwuegyHVw78P6Q9xneWnJAoaIUTqyBA59AzgVo1hEmLtN/QGkp8aSg22BWC1yGG11OdvPmzYB+OdlnnnnmPz6nuLiYxYsX8/3339f5vIrym8qcHHJWrSJ7zVqMeXnY9+tHy3ffwb5/f+kBhfVn1rMmbg05ZTn09OzJy/1eZpD3ILnHcJfmw9EIOLgEijLAuzeMeEs/JFBiKag6zGqB/69nyrXldi4nm5CQQFJS0tVn32lpafTs2ZMjR47QooXkn54rDV7FpUsYoqLI3fgFoqSEpncPw2PhQuwk/2swsziTVadXseHsBoorixniM4SQwBB6Nu8pdS4KM+HwUjgSDmV54H8nDI4Av8FSTr6pSWa1wGW4ncvJBgUFkZGRcfX3fn5+HD16VB2FotSqssQkDOHh5H31FRiNOI8Zg/vCBTRp21bqXKn5qUSeimRb/DaqRBUj/EYQEhhCB7c/vb5d7cpNgQP/huOroLIUOo3VT77xlvyAUoMa/QK/3cvJKkpdKYk9pQcUdu5Es7HBdepU3OfPkx5QOJt9loiYCHYk78BSs2RC2wnM6zKPVk6yAwpnYP+/IGaj/vuu98PAx6FZe7lz1YKbupxsTVGXk1WUmyOEoPjwYQyhoRQdOIiFoyOuM2bgNnsWVu41f13pW3H8ynHCY8LZm74Xeyt7pnWYxqzOs2hm30zqXKQd0w8FPPO1HlDoOQcGPArOPlLHik3PI3RPIi+N6Uwzx9u7QmFNX05WUZRaIIxGCn/6iazQMD2g4OFBs78/iev06WYRUIiIieB4xnFcm7jyaPdHub/j/Tg3cZY2lx5QiNYXd9IeU0DhWejzYK0EFG5+LMHhpGyWRCew51wmjk2suK+XD0Mda/ZBTi1wRTEDoqKCvG9MAYX4BKx9fGjx6is4T5woPaCwM3knETERnM05SwuHFjzX5zkmtZskOaBghDOmgMLFX6BpC7jnTVNAwVHiWIKfzmSwJDqe4ym5eDS14ZmRHXigX2ucbGv+EEWzWOA3cyRIfVWXL1Ep9Y+xpITcTZvJjoyk4uJFmrRvT8v338dp1EizCCgsP7Wc1IJU2ji34c2BbzLaf7T8gELM57DvX9cEFD6GbtPrJKBww7GqjHx18iKfRSdy9koBPq52vDG+C1N6t8LWuvaOeZe+wG1tbTEYDLi7uze4JS6EwGAwYGtrK3sUxczoAYV1ZK9cqQcUevSg+Usv0jQ4WOrfg6KKIj4/qwcUMksyCXQP5O/Bf+dOXzMIKBxfqdfd89OgeRBMjoTOE+o0oHC90ooqNh5NZdmeRNJySmjfvCkfTevGmK4tsbas/e+X9AXu4+NDWloamZmZskepFba2tvj4yP0himI+KjMzyV6x4veAwuDBeCxaiF3v3lIXd3ZpNmvi1rDuzDoKygvo69WXtwa/Rd8WfeU+sSrJ0QMKh5bqAQXfATD2X9D2bqnHcOeXVrD6UDKR+y6QVVhGD18XXhnbhWEdPbGwqLu5pC9wa2tr2rQxr0s0KkpNK09NxRARQd5mPaDgOOIePBYuxLZzZ6lzXSq8xIrTK9h0bhOlVaUM8x3GgqAFBHoESp2L/Etw6P/gaJQpoDDSFFDoJ3WsrMIyIvclsepgMgVllQxu58EjwT3o5+8m5YFO+gJXlIas9Ow5DGGmgIKFBc4TJugBBT8/qXMl5iUSGRPJN4nfADDafzQhgSH4u5hTQKFSvz7JwL9BC7kPKKnZxYTtTWTDz6mUVxkZHejFQ0MDCPKReAQOaoErSq0oPv4LhtBQCqOj0eztcZs9G7e5c7BuLve60qeyThEeE86PKT/SxLIJ0zpOY07nOXg19ZI6lx5Q+AhObzUFFB7Qr8UtOaBw7koBn0UnsO3Xi1hoMKmHDw8O9ce/mbxDOq+lFrii1BAhBEX79mFYFkrx0aN6QOGvj+I2c6b0gMLhy4cJjwm/GlBY2HUhMzvNxM3WTdpcgB5Q2PshxO80BRT+agooyL2m0PGUHJbsSuCHuCvYWVsyd4AfCwa3wctZ4qGTf0AtcEWpJlFVRcH335MVFkbZaVNA4R/P4TJlivSAwq6UXUTERhCTFYOHnQdP9nqSKe2n0NRG4jNIIeD89/riTj0E9u5w14twx0KpAQUhBHvPZ7EkOp5Didk421nz+LB2zB3gh6uDxOuW/w9qgSvKbTKWl5O31RRQSE7Bxs8Pr8Vv4jx2rPSAwreJ3xIZG0liXiI+TX14qd9LjG87niaW8o6VpqpSf4lk30dwJdYUUHhP701KDChUGQU7Tl1maXQCMel5NHdqwov3dmJ6H18cmpj3ijTv6RTFDBmLisjZ8LkeUMjIwLZzZzz/9S8ch99tFgGFFadWcKnoEu1d2/Pu4He5x+8erCwk/lWvKIVf1+o/nMy5AB4dYMJnEDRZakChvNLI1l/S+Wx3AolZRbTxcOCdSUFM7OlNEyuJwYlboBa4otwkPaCwmuw1a/SAQt++eL39Fg4DBkg9Vjq/PP9qQCG7NJsenj14sd+LDPYebAYBhUg4tAQKr4B3L7hnMXQYLTWgUFxeybojqYTvTeRSXildWjrxfzN6MjKwBZZ1eAx3TVALXFH+RMXly2RHRZHz+UY9oDBsGB4LF2DXvbvUuTKLM1kVt4rPz35OUUURg70HsyBogfyAQlGWfuLNz2FQmgf+wTApDNoMkXryTW5xOcsPXGD5gQvkFlfQt40b79zXlSHtPOrtWeBqgSvKDZQlJmGICCfvy98CCvfiFhKCbXu515VOLUglKjaKbfHbqBSVjGg9gpAgcwgopJoCCitNAYUxpoBCL6ljXc4rJXxvImuPpFBcXsXdnTx5OLgtvVq7Sp2rJlRrgWua9gSwABBADDBPCFFaE4MpiiwlsacwhIVR8P33ekBhyhTc5s/HxscMAgqxEey4oAcUxrcdz7wu8/B18pU6F5ln9YtLxXyu/77rNP3kG8kBhaSsIpbtTmDz8XSqhGBsVy8eCg6gYwsnqXPVpNte4JqmeQOPAZ2FECWapn0O3A8sr6HZFKXO6AGFI6aAwgEsmjbFfeFCPaAgOZX3S8YvhMeEsydtD/ZW9szuPJtZnWfhae8pdS7Sj+mHAp75Bqxs9cMA+/8FXOQWeWLT81i6O4HvYi5hZWnB1Dt8eHBIAK3c5B3pUluq+xKKFWCnaVoFYA9crP5IilJ3hNFI4a5dGELDKPn1Vyzd3Wn25JO4Tr8fS0d515UWQrAvfR/hMeEczziOSxMX/tL9L0zvON1MAgofQdJusHWGIU9D34ekBxSOmAIKu89l0rSJFYuGBDB/kB+ejg33aqC3vcCFEOmapn0ApAAlwPdCiO+v/zhN0xYBiwB8fSX/U09RTERFBfnffoshPJyy8/FYe3vT/OWXcJk0CQuJl/+tMlbpAYXYCM5kn7kaUJjYdiL21hKfQRqNeqps30dw8bgeUBj+BvSeJzWgIITgx7gMlu5O4FhyDu4ONjw9Qg8oONtJvG55HbntJqamaa7AJmAakAtsBL4QQqy+0ef8URNTUeqSsbSU3E2byI4wBRTatcV94UKcRo+WGlAoryrny4QviYqNIqUghTbObZgfOJ9729yLtcRjpamqgJOf65HgrHPg2kYPBHebDtbyHugqq4x8ffISS6MTOHulAG8XOx4c6s/UWg4oyFIbTcy7gSQhRKbpBjYDA4AbLnBFkaWqoOD3gILBgF337jR/8UWaBg9Fk3hMclFFEV+c+4KVp1aSUZJBF/cufBT8EXf53iU5oFBsCij8+/eAwn0RekDBUt4DXWlFFRuPpRG6J4HU7BLaeTblw6ndGNutbgIK5qY6/yVSgH6aptmjv4QyDFBPrxWzUpmV9XtAobAQh0GDcF+0EPs77pB67G9OaQ5rz6xlbdxa8svz6duiL28OepN+Xv3MIKAQDoeXQrEBfPvDmI+g3XCpx3AXlFaw+lAKEfuSyCoso3srF166tzN3d2pepwEFc1Od18APa5r2BXAcqAR+AUJrajBFqY7ytDQ9oLBpM6KiAscRI3BfuAC7Ll2kznW56DIrTq1g0/lNlFSWcFeru1gQtICgZkFS56LgMhz8P/3MyfJCaDdCP4a7dX+pY2UVlhG1P4mVB5MpKNUDCg8Hd6e/f8NLMN6Oav1bSAjxCvBKDc2iKNVWeu4chrBw8r/9FiwscB4/DveQEJpIrj4l5SURGRvJ14lfg9ADCvMD5xPgEiB1LrIT9WuUnFirBxS6TNIXt+SAQlpOMWF7EllvCiiM7NKCh4MD6Ooj72qF5kidiak0CMW//IIhNIzCXbv0gMIDD+A2by7WLeReV/qU4RQRMRH8kPwDTSybMLX9VOZ0mUPLpi2lzsXlGP2IklNbwMIKus+EgY/plXeJzl8pYKkpoKABE3t48+DQANp6mkdAwdyoBa7UW3pAYT+G0FCKf/4ZS2dnPB59FNeZM7BylXeatBCCny//THhMOAcvHcTR2pEFQQuY2Wkm7nbyjpUGIPkg7PtQvx63TVPo/6h+8o3kgMIvKTksiU5g52k9oDC7f2sWDvanpYt5BRTMjVrgSr3zXwGF5s3xfO5ZXKdMwcLBQdpcRmEkOjWaiJgITmadxN3WnSd6PcHU9lPNIKCwU1/cKQf1gMKdL0KfBWAn94FuX3wWS3YlcDDRgLOdNY+ZAgpuZhpQMDdqgSv1hrG8nLxt28gOj6A8ORmb1q3xevMNnMaNw0JyQOG7pO+IjIkkIS8B76beZhZQ+BdciQEnHxj5LvScLTWgYDQFFJaYAgqejk14YXQnpvf1pamZBxTMjfpuKWbPWFREzucb9YDClSs06dwJ7399hOPw4VIDCqWVpVcDCheLLtLOtR3vDH6HEX4jzCSg8AnkJIFHe5iwFIKmyA8onDAFFDKL8HO35+1JQUyqRwEFc6MWuGK2KnNyyFm9hpzVq6nKy8O+Tx+8Fi/GYaD8gMKGMxtYHbea7NJsujfrzvN9n2eIzxC5h7aVFeiHAR5cAoWXoWVPuOcN6HCv9IDC+iOphJkCCp28nPj39B6MDvKqdwEFc6MWuGJ29IDCcnI2bkQUF9P0rrvwWLRQekAhqySLVaf1gEJhRSEDvQeyIHABvZr3kru4i7Lg8GdwJFQPKLQZCpOW6f8vOaCw4kAyyw8kkVNcQR8/N96aFERw+2bqGO4aoha4YjbKkpL0k2+2fQlGI073jsZ9wQLpAYW0gjSWn1rOlvNbqBSVDG89nJDAEDq5d5I6F7mpcPBTOLYCKkug4xgY/KT0gMKVfFNA4W55gVUAACAASURBVHAKReVVDOvoycPBAfT2c5M6V0OkFrgiXcmpUxhCrw0oTDYFFHykznU+5zwRsRFsT9qOhWbBuIBxzAucR2un1lLnIvOcfnGpkxv03wdNhUF/g2ZyizwXsopYtieBTcfSqTQaGdutJQ8NDaCTV8MJKJgbtcAVKYQQFB/5WQ8o7N+vBxQWLMBtzmzpAYUTGScIjwlnd9pu7KzseKDTA8zqPIvmDs2lzkX6cf1QwLivTQGFBfpx3JIDCqcu5rE0OoFvTQGFKb31gIKve8MLKJgbtcCVOiWMRgqjozEsCzW7gML+i/sJjwnn2JVjuDRx4ZHujzCj4wz5AYWk3Xr55mpA4SlTQEHuA50eUIgn+qweUFg4xJ+QgW3wdGq4AQVzoxa4UidEZaUeUAgLM7+AQspOImMiicuOo7l9c5654xnua3ef/IDC2W/0093Tj0HT5jD8deg1D2zlvSQhhOCnMxksjU7gaHIObg42PHVPe2b192sUAQVzoxa4UquMpaXkbt6sBxTS02nSri0t33sXp1Gj0KwlHpNcVc5XCV8RdSqK5Pxk/Jz8eH3A64zxHyM/oBCzUT/5JussuPrpl3PtNkN6QOGbGD2gcOayHlB4dWxnpt3hi52NOoZbFrXAlVpRVVBAzrr1ZK9YoQcUunWj+QvP0zQ4WGpAobiimI3nNl4NKHRy68Q/h/6TYb7DsLSQuIjKi+GXVXpAIS8VmgeaTUDhi2NphO5JJCW7mLaeTfnnlG6M6944AwrmRi1wpUbpAYWV5KxbpwcUBg7EfdEi7PvIDSjklubqAYUza8kry6NPiz68MegN+nv1lxxQyIWfw+DQZ1CcBa36wb3/hHb3SA8orDmsBxQyC8ro1sqFF+7txPBGHlAwN2qBKzWiPC2d7MgIcjdtRpSX6wGFBQuwCzSvgMKdre4kJCiEbs26SZ2LgstwaAn8HAnlBfrCHvSk9ICCobCMqP0XWHnwAvmllQxq68HH07rTP0AFFMyRWuBKtZSdP09WWBj535hXQOFC3gUiYyP5KvErhBCMbqMHFNq6tpU6F9lJ1wQUKqDLRFNAQW6RJy2nmPC9Saz/OYWySiMjOusBhW6tVEDBnKkFrtyWkhMnyAoNo/Cnn9Ds7MwmoHDacJrwmHB+SP4BG0sbJrebzNzAuXg39ZY6F5djTQGFzaaAwgwY8Bi4yy3ynL9SwNLdCXx54iIAE3p485AKKNQbaoErN00IQdH+A3pA4cgRLJyd8fjLX3B9YKb0gMLRK0cJjwnnwMUDNLVuSkhQCDM7zcTDTu6x0qQc0o/hPr/DFFD4C/T7Czh5SR3rRGouS3bF8/3pK9haWzCrf2sWDPbHWwUU6hW1wJU/JaqqKNi5E0NoGKWnT2Pl6Ynns8/iOlV+QGF36m7CY8M5makHFP7W829M7TAVRxt5JwUhBMT/oC/ulANg5wZ3vgB9FkoPKOyPN7AkOp4DCQacbK147K62zB3YRgUU6im1wJUbEuXl5H35JYbwCMovXMCmdWtavPE6zuPHSw8obE/aTmRsJPG58Xg39ebFvi8yvu14bK0kngVorDIFFD7Sm5NXAwqzwEbiA51R8P1pPaBwMk0PKDw/uiMz+rZWAYV6Tv3XU/6LsaiInI0byY4yv4DClvgtrDi1gvTCdNq6tOXtwW8z0m+k3IBCZZn+Q8n9H/8eUBi/RA8oWMl7oCuvNLLNFFBIyCyitbs9b03UAwq21urkm4ZALXDlqqrcXLJXryFn1So9oHDHHXi9+SYOgwZKPYSsoLyADWc3sOr0KrJLs+nWrBvP9XmOIT5DsNAknkxSVgBHo+Dg/5kCCj1g+Cr9sq5mEFAI35vIRVNA4ZPpPRgd2AIrdfJNg6IWuELFlSt6QOHzz/WAwp134r5oIfY9ekidK6ski9WnV7Ph7AY9oNByICFBIfRu3ltyQMFwTUAhF9oMgYmfgX+w1JNv8oorWHHwAssPXCC7qJw7/FxZPDGI4A4qoNBQqQXeiJVfuIAhIoLcrdv0gMJoU0Chg9yAQnphOlGxUWyN30p5VbkeUAgKobN7Z6lzkZcGBz6F4yugolh/pj3oSfCRG1DIyC8lfF8Saw4lU1RexV2mgMIdKqDQ4KkF3giVnj5NVmgYBTt2oFlb4zL5PtxDQswioBAZG8l3Sd+haRrjA8abR0Ah67x+camTGwChv7Y98G/g2VHqWMmGIj7bncimY2lUGo2M6dqSh4NVQKExUQu8kRBCUPzzzxhCwyjatw8LBwfcF4TgNns2Vs2aSZ3tRMYJImIiiE6Lxs7KjpmdZjK782z5AYWLv+iHAsZ9pQcUes+HAY+Ci6/UsU5fzGfp7gS+OXkRKwsLJvf24cEh/rR2l3ekiyJHtRa4pmkuQDgQCAhgvhDiYE0MptQMPaCwG0NoKCUnTmDp5kazJ57QAwpOcq8rfeDiAcJjwjl65SjOTZx5pNsjTO84HRdbiadvCwFJe/TyTWI0NHGGwX/XAwpN5T7Q/XwhmyW74tl1NhMHG0sWDvYnZJAKKDRm1X0G/jGwXQgxWdM0G0A1lMyEqKwk/7vvMISGUXb+PNYtW9L8pRdxue8+6QGFH1J+ICImgrjsODztPc0ooPCtvrjTj4GDJ9z9mv6sW3JAYdfZDJbs+j2g8Pfh7Znd3w9nexVQaOxue4FrmuYEDAHmAgghyoHymhlLuV3GsjLyNm/GEBFJRVoaNm0DaPnuOziNHi01oFBRVcFXiV8RFRvFhfwLZhZQ+EKPBGeeAZfWcO+H0H2mWQUUWjrb8srYztyvAgrKNarzDNwfyASiNE3rBhwDHhdCFF37QZqmLQIWAfj6yn3tsCG7GlBYuZKqrCxsu3Wl+T+eo+mdd0oPKHxx7gtWnF5BRrG5BRRWmwIKKeDZBSaF61cHlBxQ2HQ8jWW79YBCQDMHPpjSjfEqoKD8AU0IcXufqGm9gUPAQCHEYU3TPgbyhRAv3ehzevfuLY4ePXp7kyp/qNJg+D2gUFCAw4ABekChbx+zCijc0eIOFgQuoH9LcwgohMOhpaaAQl/9UMD2I6Qew11YVsmaQ8mE/xZQ8HHm4eC23NNZBRQU0DTtmBCi9/Vvr85TjTQgTQhx2PT7L4DnqvH1lFugBxQiyd20SQ8o3HMP7gsXSg8oXCm6worTK/ji3BeUVJYQ3CqYBUELzCCgcAUO/d/vAYW2w2Hwk9B6gNSxDIVlLD9wgRUH9IDCwLbu/GtadwaogIJyE257gQshLmualqppWgchxFlgGHC65kZT/kjZ+fMYwsPJ+/obPaAwbizuIQto4i8/oBB1KoovE768GlCYFziPdq7tpM5FdhIc+AR+WaMHFDpP0AMKXl2ljpWeW0LYnkTW/5xCaYWREV2a80hwWxVQUG5JdV/s+yuwxnQESiIwr/ojKX+k5Ndf9YDCjz+aAgozcZs7F2svudeVjjPEER4Tzs7kneYVULhySr8qYOxmsLCEbtNh4OPSAwrxGQUsjU5k24l0AMZ39+bhYH/aekq8/K1Sb1VrgQshTgD/9bqMUjOEEBQdOIAhNIziw4f1gMIjj+A66wGzCChExESw/+J+MwsoHNYPBTy3HawdoN/D0P9R6QGFX1NzWRKtBxSaWFnwQL/WLBjcBh9XdeStcvvUmZhmSBiNFOz8AUNoKKWnTukBhWeewWXqVCybyg0o7EnbQ3hMOL9m/oqbrRuP93ycaR2mmUFA4Ud9cSfv1wMKwc/rAQV7edcDEUJwIEEPKOyPN+Boa8Vfgtsyb6Af7k2bSJtLaTjUAjcjorycvK++xhAeTnlSEtatfWnx+ms4T5ggNaBQaazku6Tv/iOg8ELfF5jQdoIZBBS2mQIKJ8HJG0a+Az1nm0FA4QpLo+P5NS2PZo5NeG5UR2b29cXRVp18o9QctcDNgLG4mNwvvsAQGUXl5cs06dQJ748+xPGee6QHFLbGb2X5qeVXAwpvDXqLUW1GyQ8o/LpODyhkJ4J7Oxj/fxA0VWpAoaLKyLYTF/lsdwLxGYX4utmzeGIg9/X0UQEFpVaoBS5RVW4u2WvWkLNqNVW5udj37o3XG6/jMGiQWQQUVp9ejaHUYEYBhUI4ZgooFFwCr+4wdaUpoCBvQZaUV7H+5xTC9ugBhY4tHPn4/u7cG+SlAgpKrVILXIKKKxlkL19O7oYNGIuLaRocrJ9801NuQMFQYmB13GrWn1lvXgGF4mw9oHB4mR5Q8BsME5aA/53SAworD14gyhRQ6N3alTcnBnJnB091DLdSJ9QCr0PlyckYwiPI27oVUVWlBxQWLjSLgMLy2OVsid9iZgGFdDj4KRxbrgcUOtyrn3zjI/fAp4z8UiL2JbHmcAqFZZUEd2jGI8Ft6dNGBRSUuqUWeB0ojYvDEBZG/vYdaFZWON83SQ8otGolda74nHgiYyP5NulbNE1jXMA45nWZh5+zn9S5yDqvX1zq1w0gjNB1qn4Mt2cnqWMlG4pYtieRL46lUVllZHSQFw8HB9ClpbPUuZTGSy3wWlR89ChZoaEU7dmrBxRC5ptFQOHXzF8JjwknOlUPKMzoNIPZnWfTwqGF1Lm4+It+RMnpL8GqCfSeBwP+Kj2gEHcpn6XRCXxtCijc10sPKPh5qICCIpda4DVMCEFhdDSGsHBKjh/XAwp/+xuuM6ZLDygcvHiQ8Nhwfr78s3kFFC7s1cs3ibtMAYUnoe/DZhFQWBqdwE9nMnCwsWSBKaDQXAUUFDOhFngN0QMK2zGEhVF27hxWLb1o/uKLuNw3CQs7O2lzVRmr+DHlRyJiIzhtOI2nvSdP936aye0nyw8onPtOX9zpR00BhVdNAQV5L0kIIYg+m8mS6Hh+vpCDq701Tw5vz+z+rXGxl3eIoqL8EbXAq8lYVkbeli16QCE1FZuAALzeeRvne++VHlD4OvFrImMjuZB/gdZOrXltwGuM8R+DjaXERVRVAbGb9EhwZpwpoPBPU0BB5gOduBpQiLuUj5ezLS+P6cz9fVphb6P+mijmSd0zb1NVYSG569djWLGCqswsbLt2pfmzz9D0rrukBxQ2nd/EilMruFJ8hU5unfhg6Afc7Xu33IBCRYkeUNj/iSmg0BkmhUGXSVIDCmWVVWw6lk7ongQuGIrxb+bAe5O7MqG7NzZW6hhuxbypBX6LKrOzyV65kpy16zDm5+MwoD/u77+Pfd++Uo/9zSvLY23cWtacWUNeWR69m/fmtQGvMaDlALnHJJfm/R5QKMrUAwqj34d294DEB7rCskrWHk4mfG8SGQVlBHk7s3RmT+7p0gJLFVBQ6gm1wG9SRXo6hqjl5H7xBaKsDMfhw/WAQlCg1LmuFF1h5emVbDy3UQ8o+AQTEhRCd8/uUueiMEM/Y/JoJJTlQ9u79fJN6wFST77JLipn+f4kVhxMJq+kggEB7nw4tTsD26qAglL/qAX+J8ri4zGEhZP3zTcAOI8bh/uCEJr4+0udKzk/majYKLYlbEMIwag2o5gfOF9+QCHngv4yyS+roaocuvwWUJBb5LmYW0LoNQGFezo35+HgAHr4yrssr6JUl1rgN1By8iRZoaEU/qAHFFxnTMd93jyzCihYW1hzX7v7mNtlLj6OPlLn4sppU0BhE2gW0H06DPybGQQUCvlsdwJbf0lHAOO7t+ThoQG0a64CCkr9pxb4NYQQFB88SFZoGMWHDmHh5ITHIw/jOmuW2QUU5gfO54HOD8gPKKQe0Q8FPPfdNQGFv4BTS6ljnUzLZcmuBHacvoyNpQUz+/qycIi/CigoDYpa4JgCCj/8gCE0jNLYWKyaNcPz6adxmTZNBRT+iBCQ8CPs/QiS94GdKwT/A/oskh5QOJhgYEl0Avvis3C0teKR4ADmDWyDhwooKA1Qo17gorycvK+/0QMKiYlY+/rS4rXXcJ4oP6Cw/cJ2ImIiiM+Np6VDS57v+zwT2040r4CCY0sY8Tb0miM9oLAz7gpLohP4NTUXj6ZNeHZkRx7opwIKSsPWKBf41YBC1HIqL12iSceOeH/4TxxHjJAaUCirKmPr+a1EnYoivTCdAOcA3hr0FiPbjMTaQuIiqiyHk+v1k2+yE8C9LYz7FLpOkx5Q+NIUUDifUUgrNzvenBDI5F4qoKA0Do1qgVfl5f0eUMjJwa53L7xeexWHwYPNKqDQtVlXnr3jWYa2Gio/oHB8BRz4FAou6keSTFkBncZKDyhs+DmFsL1JpOeWqICC0mg1igVekZFB9vIV5K5frwcUhg7F/cFF2PfsKXWu3wIKG85soKCigAEtB7AgaIGZBBSWwZFlUJKjBxTGfwoBd8kNKJRUsOrgBaL2X8BQVE6v1q68Pr4Ld3VUAQWlcWrQC7w8JUUPKGzZogcURo3CfdFCbDt0kDrX9QGFu1vfTUhQCF3cu0idi/yL+rPtY8uhogg6jNZPvml1h9SxMgpMAYVDekBhaPtmPBIcQJ82bmpxK41ag1zgpWfOYAgNI3/7djRLS5wnTcI9ZD42vnKvK319QGGs/1jmBc6jjXMbqXORFW8KKKzXAwpBU/SAQnO5RZ4UQzHL9iSw0RRQGBXkxcNDAwj0VgEFRYEGtsCLjx3TAwq79+gBhfnzcJ09G2tPT6lzncw8SXhMOLtSd2FnZcf0jtOZ02WO/IDCpV/1Y7hPb9MDCr3m6gEF19ZSxzpzWQ8ofPXrbwEFbxYNCaCNCigoyn+o9wtcCEHh7t0YQsP0gIKrK83+9jiu06dj6Sz3utIHLx0kIiaCI5eP4GTjxMPdHmZ6x+m42ko8fVsISN6vL+6EH6GJk36qe7+HoancB7qjpoDCj2cysLexJGRQG0IG+dPCWQUUFOWP1NsFLioryd++Qw8onD2rBxReeAGXyfeZV0DBzpOnej/FlPZT5AcUzu/QF3faEXBoBsNegTtC5AcUzmWydFcCRy5k42pvzRN3t2fOABVQUJQ/U+0FrmmaJXAUSBdCjKn+SP+bHlDYiiEi4veAwttv4zzGvAIKvo6+vNr/VcYGjJUcUKjUr0+y/1+QcVrvS47+AHo8ID2g8K0poHDaFFB4aUxnpquAgqLctJr4m/I4EAfUavCxqrCI3A3rMSxfrgcUgoLwfOZpHIcNM6uAQke3jrw/9H2G+w43j4DCgU8gNwWadYKJoRB4n/SAwubj6SzbbQooeDjw3n1dmdBDBRQU5VZV62+ypmk+wL3AYuDJGpnoD2SvXEXmp5/+HlB47z3s+/WTH1A4s5a1cWvJLculV/NevDrgVQa2HGgGAYUIU0AhA3z6wKj3oN0I6QGFdYdTCN+XyJX8MgK9nVgysycjVEBBUW5bdZ+K/Qt4BrjhlZU0TVsELALwvd3D+DQNh759cV+0ELugoNv7GjUkoziDlaf0gEJxZbEZBRQy4dASvX5Tlg8Bw/S6e+uB8gMKBy6w4sAF8koq6O/vzgdTujGorYc6hltRqkkTQtzeJ2raGGC0EOIRTdOCgaf+7DXw3r17i6NHj97ybQkhpP9l/y2g8GXClxiFkZFtRjI/cD7tXdtLnYucZDjwb/hlFVSWQefx+lElLeU+oFzMLSFsbyLrj6RSUlHFcFNAoacKKCjKLdM07ZgQovf1b6/OM/CBwDhN00YDtoCTpmmrhRAPVONr/iGZy/tM9pmrAQUrzYpJ7SYxp8scWjm2kjYTABlx+sWlYjbqAYVu9+sBBY+2UsdKyCzks+gEtp5IxyhgfLeWPBQcQHsVUFCUGnfbC1wI8Q/gHwDXPAOv8eUtgxCCY1eOER4bzv70/ThYOzC3y1xmdZ5lBgGFn2Hfh3D2Wz2g0PchPaDg7C11rJi0PJZEx7P9lB5QmN7Hl4WD/WnlpgIKilJb1PFa1xBCXA0onMg8gZutG4/1eIxpHafhZFOrB9n82WCQ8JN+He4Le80roJBoYGl0AnvPZ+HYxIqHh+oBhWaOKqCgKLWtRha4ECIaiK6JryVDpbGSHRd2EBEbwfmc83g5ePGPPv9gYruJ2FnJO1YaYxXEfaUv7ksnTAGFt6DnHGjSVN5YRsEPpoDCiWsCCjP7+eKkAgqKUmca9TPwsqoytsVvIyo2irTCNDMLKGzQT74xxINbAIz7tymgIO+ZbUWVka9+1QMK564U4uNqxxsTApmiAgqKIkWjXOCF5YVsOLuBVadX6QEFj648fcfTBLcKlhtQKC+CYyvg4KeQnw4tusKU5dBpnNSAQmlFFZ8fTWXZ7kTSc0vo0NyRf03rzpiuKqCgKDI1qgVuKDGwJm4N68+sp6CigP5e/VkQtIA7WtwhP6BwJBQOf6YHFFoPgnGf6MdyS5wrv7SCVQeTidqfRFZhOT19XXhtnB5QsFAn3yiKdI1igV8svMjyU8vZcn4LZVVlekAhMIQuHmYQUDj4f3A0Sg8otB+ln3zTqo/UsTILykwBhWQKyioZYgoo9FUBBUUxKw16gSfkJugBhcRvARgTMIZ5gfPwd/aXO5gh4feAgrEKgibrx3BLDiikZusBhc+PplFRZWR0oBcPB6uAgqKYqwa5wGMyYwiPCeen1J+ws7Lj/o73m09AYd9HekDBwhp6zjYFFPykjnX2cgFLo+P56uQlLDS4r6cPDw5VAQVFMXcNZoELITh06RARMREcvnwYJxsnHur2EDM6zjCDgMIB/eSb+B/0gMLAx6HfI9IDCseSc1gaHc8PcXpAYd4APxYMVgEFRakv6v0CNwqjHlCIieCU4RTN7JrxVO+nmNx+Mg7WEp9BCgHntuvPuFMPg70HDHsZ7lggPaCw53wWS3bFczgpGxd7a/52dzvm9PfD1UEFFBSlPqm3C/yPAgqv9H+FcQHj5AcUTm3WF3fGaXA2n4DCd7F6QOHUxXxaONny4r2dmN7HF4cm9fZuoCiNWr37m1tcUczm85tZcXoFl4su08G1A+8PeZ/hrWUHFErhxGrY/wnkJkOzjjBxmSmgIO+koLLKKrYcT2fZnkSSsopUQEFRGpB6s8DzyvJYd2Yda+LWkFuWS0/Pnrzc72UGeQ+SHFDIh6MRcHCJHlDw7g0j39YPCZQYUCgqq2TdkRTC9yZxOb9UBRQUpQGqFwt8xakVLDmxhOLKYob6DCUkKIQenj3kDlWYCYeXwpFwKMsD/zthcAT4DZZ68k3ObwGFgxfILa6gn78b703uyuB2KqCgKA1NvVjgdlZ2BLcKZn7gfDq4dZA7TG6KHlA4vtIUUBhnCijIfUC5lFdC+N4k1h1Jobi8irs7NeeRO1VAQVEasnqxwKd2mMrUDlPlDpFxRv/B5NWAwjRTQKGd1LESMwtZtjuRzb+kXQ0oPDg0gA4tVEBBURq6erHApUo7Cns/hLPfgLU99H3QFFDwkTpWbLoeUPguVgUUFKWxUgv8jwgBibv0xX1hL9i6wNBnoc+D4OAucSzBocRslkTHq4CCoihqgf8HoxHOfKUv7ksnwNEL7nkTes2FJvJekjAaBT+eyWBJdDy/pOTi0dSGZ0Z24IF+rVVAQVEaMbXAQQ8oxHyuR4IN58HNH8Z+DN2mSw0oVFYZ+erkRZZGXxNQGN+FKb1bqYCCoiiNfIGXF+lHkxz4tymgEASTo6DzeOkBhY1HU1m2J5G0nBLaN2/KR9O6MbZrSxVQUBTlqsa5wIuz4UiYKaCQDa0HwthPoK38gMLqQ8lE7vs9oPDqWBVQUBTljzWuBZ5/Sc+VHVsO5YXQfiQMehJ8+0odK7OgjMj9Saw+qAIKiqLcvMaxwA0JsP9j+HUdGCv165MMegKayy3ypGYXE7onkc+PplKuAgqKotyihr3AL500BRS26gGFHg/AgMfArY3Usc5dKWBpdAJf/noRCw0m9fDhwaH++DdrKnUuRVHql4a5wJMP6IcCxu8EG0d9afd7BBybSx3reEoOS3Yl8EPcFextLJk7wI8Fg9vg5SzvMrOKotRfDWeBCwHndpgCCof0gMJdL+kBBTsXiWMJ9p7PYkl0PIcSVUBBUZSaU/8XeFUlnNpiCiicAudWMOp9/eUSG3mnlVcZBdtjL7N0dzyx6SqgoChKzau/m6SiFE6sgQOfQM4F8OgAEz7TC+8SAwrllUa2/JLGst2JJGYV0cbDgXfvC2JCD2+aWKmTbxRFqTm3vcA1TWsFrARaAEYgVAjxcU0NdkOl+XA0Eg4tgcIr4N0L7lkMHUabVUChS0sn/m9GT0YGqoCCoii1ozrPwCuBvwshjmua5ggc0zRtpxDidA3N9p+KsuDQUvg5DErzwD8YJoVBmyFST77JLdYDCssP6AGFvm3ceHdyV4aogIKiKLXsthe4EOIScMn06wJN0+IAb6DmF/jeD2H3e1BZCp3G6sdwe/es8Zu5FZfzSgnfm8jaqwEFTx4Obkuv1iqgoChK3aiR18A1TfMDegCH/+B9i4BFAL6+vrd3Aw4e+sk3Ax+HZu1ve86akJRVxLLdCWw6rgcUxnVryUMqoKAoigSaEKJ6X0DTmgK7gcVCiM3/62N79+4tjh49Wq3bkyU2PY+l0Ql8G3sJa0sLpvVuxaIhKqCgKErt0zTtmBCi9/Vvr9YzcE3TrIFNwJo/W971kRCCw0nZLIlOYM+5TBybWPHQ0ADmq4CCoihmoDpHoWhABBAnhPiw5kaSz2gU/GQKKBw3BRSeHtGBWf1VQEFRFPNRnWfgA4FZQIymaSdMb3teCPFt9ceSo7LKyNcnL7E0OoGzVwrwdrHj9fFdmKoCCoqimKHqHIWyD2gQx8mVVlSx8VgaoXsSSM0uoZ1nUz6c2o2x3VpirQIKiqKYqfp7JmYN+D2gcIGswjJ6+Lrw8pguDFMBBUVR6oFGucCzCsuI3JfEqkPJFJRWMridB48E96CfvwooKIpSfzSqBZ6aXUzY3kQ2/KwHFEYFtuDhoW0J8lEBBUVR6p9GscDPXSngs+gEtpkCChN7ePPg0AACVEBBUZR6rEEv8F9SclgSncDO01ews7ZkTn8/Fg5RAQVFURqGBrfAhRDsi89iya4EDiYa1qB2gQAABblJREFUcLaz5vFh7ZgzwA83FVBQFKUBaTALvMoo2HHqMkujE4hJz6O5UxMVUFAUpUGr95utvNLI1l/S+WxPAomZRfi52/POpCAm9lQBBUVRGrZ6u8CLyytZdySV8L2JXMorpbOXE5/O6MGoQC8VUFAUpVGodws8t7icFQeSWX4giZziCvq0cePtSUEMbd9MHcOtKEqjUm8W+JV8U0DhcApFVwMKAfRq7SZ7NEVRFCnqxQL/5MfzfPpTPFVCMLarFw8FB9CxhZPssRRFUaSqFwvc28WOqXf4sGhwAL7uKqCgKIoC9WSB39fLh/t6+cgeQ1EUxayoa6UqiqLUU2qBK4qi1FNqgSuKotRTaoEriqLUU2qBK4qi1FNqgSuKotRTaoEriqLUU2qBK4qi1FOaEKLubkzTMoHk2/x0DyCrBsepKWquW6PmujVqrltjrnNB9WZrLYRodv0b63SBV4emaUeFEL1lz3E9NdetUXPdGjXXrTHXuaB2ZlMvoSiKotRTaoEriqLUU/VpgYfKHuAG1Fy3Rs11a9Rct8Zc54JamK3evAauKIqi/Kf69AxcURRFuYZa4IqiKPWUWSxwTdNGapp2VtO0eE3TnvuD92uapn1iev9JTdN63uzn1vJcM03znNQ07YCmad2ued8FTdNiNE07oWna0TqeK1jTtDzTbZ/QNO3lm/3cWp7r6WtmitU0rUrTNDfT+2rl+6VpWqSmaRmapsXe4P2y7lt/Npes+9afzSXrvvVnc9X5fcv0tVtpmrZL07Q4TdNOaZr2+B98TO3dx4QQUv8HWAIJgD9gA/wKdL7uY0YD3wEa0A84fLOfW8tzDQBcTb8e9dtcpt9fADwkfb+Cga9v53Nrc67rPn4s8FMdfL+GAD2B2Bu8v87vWzc5V53ft25yrjq/b93MXDLuW6av7QX0NP3aEThXl/vLHJ6B9wHihRCJQohyYD0w/rqPGQ+sFLpDgIumaV43+bm1NpcQ4oAQIsf020NAXXTfqvNnlvr9us50YF0N3fYNCSH2ANn/40Nk3Lf+dC5J962b+X7diNTv13Xq5L4FIIS4JIQ4bvp1ARAHeF/3YbV2HzOHBe4NpF7z+zT++xtwo4+5mc+tzbmuFYL+KPsbAXyvadoxTdMW1dBMtzJXf03TftU07TtN07rc4ufW5lxommYPjAQ2XfPm2vp+/RkZ961bVVf3rZtV1/etmybzvqVpmh/QAzh83btq7T5mDlFj7Q/edv2xjTf6mJv53Nt1019b07Q70f+SDbrmzQOFEBc1TfMEdmqadsb0LKIu5jqOfu2EQk3TRgNbgXY3+bm1OddvxgL7hRDXPqOqre/Xn5Fx37ppdXzf+v/2zZ8XgiAM479JqBCNQoGglahEcfEBhEKrlGgUCr0vodGpJBIVnY+gEIU/0aEQIZGIRHSKVzEj1ubczWFnbpPnl2x2d3bevSfvPnlvdiYbQw5vdUIWbznn+vF/Ghtm9lq+3CTkXzzWDSPwe2C0cD4CPET2iYmtUhfOuWlgB1gys+fPdjN7CPsn4BD/upREl5m9mtlbOD4Cep1zQzGxVeoqsEzpFbfCfLUjh7eiyOCttmTyVick95ZzrhdfvPfM7KBJl+o8VsXEfoeLAD3ALTDB10T+VKnPIt8XAU5iYyvWNQZcA41Sex8wUDg+BuYT6hrm6yOtWeAu5C5rvkK/QfxcZl+KfIV7jvPzolxyb0XqSu6tSF3JvRWjK6O3HLALbLXoU5nH/i25f0zCAn719gbYDG1rwFohSdvh+iUw0yo2oa4d4AU4C9tpaJ8MD+McuMqgaz387jl+AazRKjaVrnC+AuyX4irLF3409gi840c8q13irXa6cnmrna5c3mqpK4e3wv3n8NMeF4VntZDKY/qUXgghako3zIELIYT4BSrgQghRU1TAhRCipqiACyFETVEBF0KImqICLoQQNUUFXAghasoHS8Luj4mAMWUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(df)\n", "plt.legend(df.columns)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }